Search results for " stars: pre-main sequence"

showing 10 items of 36 documents

X-rays from accretion shocks in classical T Tauri stars: 2D MHD modeling and the role of local absorption

2013

AbstractIn classical T Tauri stars (CTTS) strong shocks are formed where the accretion funnel impacts with the denser stellar chromosphere. Although current models of accretion provide a plausible global picture of this process, some fundamental aspects are still unclear: the observed X-ray luminosity in accretion shocks is order of magnitudes lower than predicted; the observed density and temperature structures of the hot post-shock region are puzzling and still unexplained by models.To address these issues we performed 2D MHD simulations describing an accretion stream impacting onto the chromosphere of a CTTS, exploring different configurations and strengths of the magnetic field. From th…

Accretion MHD Stars: pre-main sequence X-rays: starsPhysicsbusiness.product_categoryAstronomyAstronomy and AstrophysicsAstrophysicsViewing angleAccretion (astrophysics)Spectral lineMagnetic fieldT Tauri starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Sciencepre-main sequence X-rays: stars [Accretion MHD Stars]FunnelMagnetohydrodynamicsbusinessChromosphereProceedings of the International Astronomical Union
researchProduct

UV And X-Ray Emission from Impacts of Fragmented Accretion Streams on Classical T Tauri Stars

2016

According to the magnetoshperic accretion scenario, during their evo- lution, Classical T Tauri stars accrete material from their circumstellar disk. The accretion process is regulated by the stellar magnetic eld and produces hot and dense post-shocks on the stellar surface as a result of impacts of the downfalling material. The impact regions are expected to strongly radiate in UV and X-rays. Several lines of evidence support the magnetospheric accretion scenario, especially in optical and infrared bands. However several points still remain unclear as, for instance,where the complex-pro le UV lines originate, or whether and how UV and X-ray emission is produced in the same shock region. Th…

AccretionPlasmaSettore FIS/05 - Astronomia E AstrofisicaAccretion accretion disks Stars: pre-main sequence Stars: variables: T Tauri Herbig Ae/BeT Tauri StarsdiskMagnetohydrodinamicMHD simulation
researchProduct

Gaia -ESO Survey: Analysis of pre-main sequence stellar spectra

2015

This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used in the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategi…

Accuracy and precisionPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstars: pre-main sequenceSurveysfundamental parameters [Stars]Astronomical spectroscopysurveysAngular diameterpre-main sequence [Stars]Astrophysics::Solar and Stellar AstrophysicsSurveydata analysis [Methods]educationSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstronomía y AstrofísicaPhysicseducation.field_of_studygeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Astronomy and AstrophysicsStars: fundamental parameterAstronomy and AstrophysicEffective temperatureopen clusters and associations: generalSurface gravitymethods: data analysisAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsMethods: data analysis; Open clusters and associations: general; Stars: fundamental parameters; Stars: pre-main sequence; Surveys; Astronomy and Astrophysics; Space and Planetary ScienceSpace and Planetary Science[SDU]Sciences of the Universe [physics]open clusters and associations: general; surveys ; methods: data analysisAstrophysics::Earth and Planetary Astrophysicsstars: fundamental parametersMethods: data analysi
researchProduct

EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80

2013

Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km s -1, creating strong shocks when interacting with the interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated with the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separate…

AstrofísicaCiencias AstronómicasCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsIndividual: Iras 18162-2048 [Stars]//purl.org/becyt/ford/1 [https]Herbig-Haro objects ISM: jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: generalHigh Energy Physics - Phenomenology (hep-ph)Herbig-Haro objectsGeneral [X-Rays]jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: general [Herbig-Haro objects ISM]Jets And Outflows [Ism]ThermalProtostarstars: individualAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsStar formationX-rayAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]radiation mechanisms: non-thermalHerbig-Haro ObjectsAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)Non-Thermal [Radiation Mechanisms]AstronomíaInterstellar mediumHigh Energy Physics - PhenomenologyISM: jets and outflowsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASThe Astrophysical Journal
researchProduct

The Gaia-ESO survey: Metallicity of the chamaeleon i star-forming region

2014

Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star-forming region, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. 48 candidate member…

AstrofísicaStars: abundanceMetallicityFOS: Physical sciencesTechniques: spectroscopicContext (language use)AstrophysicsOpen clusters and associations: individual: Chamaeleon ISolar and Stellar Astrophysics (astro-ph.SR)Line (formation)Physics85A04open clusters and associations: individual: Chamaeleon I stars: pre-main sequence stars: abundances techniques: spectroscopicStars: abundancesAstronomy and AstrophysicsSurface gravityAstronomíaStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceChamaeleonStars: pre-main sequenceOpen clusters and associations: individual: Chamaeleon I; Stars: abundances; Stars: pre-main sequence; Techniques: spectroscopicindividual: Chamaeleon I stars: pre-main sequence stars: abundances techniques: spectroscopic [open clusters and associations]Equivalent widthOpen cluster
researchProduct

The Gaia-ESO Survey: Chromospheric emission, accretion properties, and rotation in gamma Velorum and Chamaeleon

2015

Aims: One of the goals of the Gaia-ESO Survey (GES), which is conducted with FLAMES at the VLT, is the census and the characterization of the low-mass members of very young clusters and associations. We conduct a comparative study of the main properties of the sources belonging to γ Velorum (γ Vel) and Chamaeleon I (Cha I) young associations, focusing on their rotation, chromospheric radiative losses, and accretion. Methods: We used the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of γ Vel and Cha I among the UVES and GIRAFFE spectroscopic obser…

Astrofísicastars: chromospheresAstrophysics::High Energy Astrophysical PhenomenaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRotationStars: chromosphereOpen clusters and associations: individual:γVelorumstars: low-massStars: low-maAstrophysics::Solar and Stellar AstrophysicsOpen clusters and associations: individual: Chamaeleon Iopen clusters and associations: individual: γ VelorumQCAstrophysics::Galaxy AstrophysicsQBLine (formation)PhysicsAccretion (meteorology)stars: chromospheres ; stars: low-mass; open clusters and associations: individual: γ VelorumDiagramStars: rotationSpectral densityAstronomy and AstrophysicsAstronomy and AstrophysicStarsDistribution (mathematics)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceChamaeleonStars: pre-main sequenceAstrophysics::Earth and Planetary AstrophysicsOpen clusters and associations: individual: Chamaeleon I; Open clusters and associations: individual:γVelorum; Stars: chromospheres; Stars: low-mass; Stars: pre-main sequence; Stars: rotation
researchProduct

The Close T Tauri Binary System V4046 Sgr: Rotationally Modulated X-Ray Emission from Accretion Shocks

2012

We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n_e ~ 10^(11-12) cm^(-3)) plasma at temperatures of 3-4 MK. Our multiwavelength campaign aims to simultaneously constrain the properties of this X-ray emitting plasma, the large scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotatio…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesBinary starAstrophysics::Solar and Stellar AstrophysicsEmission spectrumBinary system010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysics[PHYS]Physics [physics]accretion accretion disks stars: individual: V4046 Sgr stars: magnetic field stars: pre-main sequence stars: variables: T Tauri Herbig Ae/Be X-rays: stars010308 nuclear & particles physicsAstronomy and AstrophysicsPlasmaAccretion (astrophysics)StarsT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

2013

(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthX-rays: starsAstrophysicsstars: pre-main sequence01 natural sciencesmagnetohydrodynamics (MHD)pre-main sequence X-rays: stars [accretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars]010305 fluids & plasmasSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsaccretion disksAstronomy and AstrophysicsPlasmashock wavesAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesPhysics::Space PhysicsOblique shockAstrophysics::Earth and Planetary Astrophysicsaccretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars: pre-main sequence X-rays: stars[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Variable X-ray emission from the accretion shock in the classical T Tauri star V2129 Ophiuchi

2011

The soft X-ray emission from high density plasma in CTTS is associated with the accretion process. It is still unclear whether this high density cool plasma is heated in the accretion shock, or if it is coronal plasma fed/modified by the accretion process. We conducted a coordinated quasi-simultaneous optical and X-ray observing campaign of the CTTS V2129 Oph (Chandra/HETGS data to constrain the X-ray emitting plasma components, and optical observations to constrain the characteristics of accretion and magnetic field). We analyze a 200 ks Chandra/HETGS observation of V2129 Oph, subdivided into two 100 ks segments, corresponding to two different phases within one stellar rotation. The X-ray …

FOS: Physical sciencesstars: variables:X-rays: starsmagnetic fieldAstrophysicsstars: pre-main sequenceT Tauricircumstellar matterlaw.inventionX-raycircumstellar matter stars: coronae stars: individual: V2129 Oph stars: pre-main sequence X-rays: stars stars: variables: T Tauri Herbig Ae/BeSettore FIS/05 - Astronomia E AstrofisicaaccretionlawSolar and Stellar Astrophysics (astro-ph.SR)Physicsstars: coronaeLine-of-sight[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Stellar rotationHerbig Ae/Bestars: individual: V2129Astronomy and AstrophysicsPlasmaCoronal loopAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science[SDU]Sciences of the Universe [physics]stellar activityOphFlare
researchProduct

On the observability of T Tauri accretion shocks in the X-ray band

2010

Context. High resolution X-ray observations of classical T Tauri stars (CTTSs) show a soft X-ray excess due to high density plasma (n_e=10^11-10^13 cm^-3). This emission has been attributed to shock-heated accreting material impacting onto the stellar surface. Aims. We investigate the observability of the shock-heated accreting material in the X-ray band as a function of the accretion stream properties (velocity, density, and metal abundance) in the case of plasma-beta<<1 in the post-shock zone. Methods. We use a 1-D hydrodynamic model describing the impact of an accretion stream onto the chromosphere, including the effects of radiative cooling, gravity and thermal conduction. We expl…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsRadiative coolingAstrophysics::High Energy Astrophysical Phenomenaaccretion accretion disks hydrodynamics shock waves stars: pre-main sequence X-rays: starsFOS: Physical sciencesAstronomy and AstrophysicsObservableAstrophysics::Cosmology and Extragalactic AstrophysicsPlasmaAstrophysicsThermal conductionAccretion (astrophysics)T Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceThermalAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct